
Networks / Requests
In many application, you'll need more than one container - for two main reasons:

1. It's considered a good practice to focus each container on one main task (e.g. run a web
server, run a database, ...)

2. It's very hard to configure a Container that does more than one "main thing" (e.g. run a
web server AND a database)

Multi-Container apps are quite common, especially if you're working on "real applications".

Often, some of these Containers need to communicate though:

either with each other
or with the host machine
or with the world wide web

Communicating with the World Wide Web (WWW)

Communicating with the WWW (i.e. sending Http request or other kinds of requests to other
servers) is thankfully very easy.

Consider this JavaScript example - though it'll always work, no matter which technology you're
using:

This very basic code snippet tries to send a GET request to some-api.com/my-data .

This will work out of the box, no extra configuration is required! The application, running in a
Container, will have no problems sending this request.

Communicating with the Host Machine

Communicating with the Host Machine (e.g. because you have a database running on the Host
Machine) is also quite simple, though it doesn't work without any changes.

One important note: If you deploy a Container onto a server (i.e. another machine), it's very unlikely
that you'll need to communicate with that machine. Communicating to the Host Machine typically is a
requirement during development - for example because you're running some development database on
your machine.

Again, consider this JS example:

fetch('https://some-api.com/my-data').then(...)

fetch('localhost:3000/demo').then(...)

This code snippet tries to send a GET request to some web server running on the local host
machine (i.e. outside of the Container but not the WWW).

On your local machine, this would work - inside of a Container, it will fail. Because localhost
inside of the Container refers to the Container environment, not to your local host machine
which is running the Container / Docker!

But Docker has got you covered!

You just need to change this snippet like this:

host.docker.internal is a special address / identifier which is translated to the IP address of
the machine hosting the Container by Docker.

Important: "Translated" does not mean that Docker goes ahead and changes the source code. Instead,
it simply detects the outgoing request and is able to resolve the IP address for that request.

Communicating with Other Containers

Communicating with other Containers is also quite straightforward. You have two main options:

1. Manually find out the IP of the other Container (it may change though)
2. Use Docker Networks and put the communicating Containers into the same Network

Option 1 is not great since you need to search for the IP on your own and it might change over
time.

Option 2 is perfect though. With Docker, you can create Networks via docker network create
SOME_NAME and you can then attach multiple Containers to one and the same Network.

Like this:

Both cont1 and cont2 will be in the same Network.

Now, you can simply use the Container names to let them communicate with each other - again,
Docker will resolve the IP for you (see above).

fetch('host.docker.internal:3000/demo').then(...)

docker run -network my-network --name cont1 my-image
docker run -network my-network --name cont2 my-other-image

fetch('cont1/my-data').then(...)

	Networks / Requests
	Communicating with the World Wide Web (WWW)
	Communicating with the Host Machine
	Communicating with Other Containers

